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A canonical transformation is employed to implement a conformal 
transformation of the configuration variables of general relativity. The 
transformation is so chosen that the spatial constraints become algebraic 
in the trace of the momentum density. The temporal constraint is then 
found to have the form of York and O'Murchadha. The role played by the 
York coordinate condition in decoupling the constraint equations is 
examined, and a procedure to solve the constraint equations without 
employing such a coordinate condition is sketched. 

1. INTRODUCTION 

In the Dirac canonical formalism (Dirac, 1959) the initial value problem 
for the general theory of  relativity is stated by giving a pair of  canonically 
conjugate symmetric fields over a three-dimensional manifold, gij, p*J, 

subject to the constraint equations 

J e ,  - - 2 a " I .  = - 2 @ " 1 .  + --- 0 (I.I) 

--_ g-XtZ(pmnpran __ �89 + glt2 R = 0 (1.2) 

where g~j is regarded as a Riemannian metric for the purpose of  raising and 
lowering indices, forming covariant derivatives (denoted by the bar sub- 
script), forming the affine connection F ~ ,  forming the curvature scaler R, 
forming the trace of  the canonical momentum tensor density p, and where 
g is the determinant of  gij. A central problem both for classical gravitation 
theory and for the development of  a quantum theory of  gravitation is the 
solution of  these constraints. In a recent series of  papers (York, 1972, 1973; 
O'Murchadha and York, 1973) a reeursive procedure was developed to 
exhibit the existence of  general solutions of  these equations. In brief, if  one 
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imposes the coordinate condition upon the selection of the constant time 
surfaces in the four-dimensional space-time 

t = ~g - l l ~p  (1.3) 

on the initial surface equation (1.1) can as well be written 

(p,m - :}Pg'm)rm = 0 (1.4) 

The virtue of writing the spatial constraints in this form is that it is invariant 
under the conformal transformation of  the metric tensor 

g , j  - ~ ' g , ,  (1.5) 

provided the canonically conjugate tensor density p~S is understood to 
transform simultaneously via 

/~j = ~-4p~j (1.6) 

Equation (1.4) may be solved for a canonically conjugate pair g~s,p ~j in a 
variety of ways (York, 1972, 1973). If  one then selects ~ to be a solution of 
the equation 

8~0[ m = n~  + n~0 -r  - ] t ~  5 (1.7) 

where 
M -  g - l ( p m , p , , ,  _ ]p2) (1.8) 

it can easily be confirmed that the canonically conjugate pair g~s,/~J defined 
by equations (1.5) and (1.6) will satisfy the constraint equations (1.2) as 
well as (1.1). In addition, it has been proven (O'Murchadha and York, 
1973) that for M > 0, t # 0, a solution for equation (1.7) such that 0 < 
~0 < oo everywhere on a closed, or asymptotically flat open, three-dimen- 
sional manifold exists and is unique (modulo boundary value at infinity in 
the open case). 

Despite such very strong results, it has thus far not been possible to 
apply these considerations to the quantization program for gravitation. 
The necessity of employing a coordinate condition such as equation (1.3), 
while unpleasant, may not be disastrous. However, one must determine 
the extent to which the class of space-times are restricted by the requirement 
that surfaces defined by equation (1.3) are everywhere spacelike, and either 
closed or asymptotically flat. A more serious difficulty is engendered by 
the auxiliary nature of the function q~. That is, equation (1.7) does not 
provide q~ as a functional over the constraint hypersurface of the general 
relativistic phase space, except in some nonlocal implicit sense. 

In the present paper we shall implement a conformal transformation 
canonically in such a manner that the spatial constraint, equation (1.1), is 
transformed into equation (1.4). The remaining constraint, equation (1.2), 
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will, afortiori ,  be transformed into the York-O'Murchadha form, equation 
(1.7), where now the conformal factor is an explicit function of the canonical 
variables rather than being an ad hoe auxiliary function. It will appear that, 
by this device, no coordinate condition need be imposed. Although, in a 
precise sense this is in fact true, we will surprisingly recover the York 
coordinate condition, equation (1.3), when we insist upon writing the spatial 
constraints in the manifestly covariant form of equation (1.4). We shall 
finally sketch a procedure to solve the constraints which does not require 
the imposition of coordinate conditions. 

2. CANONICAL TRANSFORMATION 

Let us consider a canonical transformation from the pair gu, pU to the 
pair 7u, rr~s generated by the functional 

A -- ~4~=/(9B=-4~) f (gm~rrm,)~gB/2 dax (2.1) 

where the constants = and fl are at our disposal. In our earlier attempt to 
simplify the constraints (Komar, 1971) by means of a canonical trans- 
formation it was pointed out that when ~ + fl = 1 the spatial constraints, 
equation (1.1), remain form invariant. As it is our intention now to alter the 
form of  the spatial constraints it will be necessary to have ~ + f l r  1. This 
will have as a consequence that the new canonical variables y~j, zru will have 
altered density weight, which we shall have to take into consideration when 
defining their eovariant derivatives. 

Proceeding in the usual fashion we determine the canonical transforma- 
tion via 

3A 
p~S = 8gu 

= agB21(9/~2-4a2)(gmn,.n.mn)a-lgB/2rrit + 

and 

~4~J~9O=-4~)(g,,nrrr'~)~'gBI2g'J (2.2) 

3A 
y~j = 8~ru 

= ~,9~l(gB=-r 

Inverting equations (2.2) and (2.3) we find 

gtJ ~--- ~ -  Bl(2a + 3B)~2(1 - a)/(2tt + 3B)ytj 

and 

p,, ~ y~'(2a + 3B).rt2(a- Z)l(2a + aB) (~'J + ~- .rryiJ) 

(2.3) 

(2.4) 

(2.5) 
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where y = det y~j, ~r = y~jrr ~j, and y~J is the reciprocal of y~j. We note that 
with regard to the spatial metric we have performed a conformal trans- 
formation. However, unlike York, we do not transform the momenta as 
in equation (1.6). The following expressions, which are an immediate con- 
sequence of equations (2.4) and (2.5), will be found to be important: 

gtJ = yatt2~+aB)~-l)/t2~+aa~y~j (2.6) 

g = ~,2,m2~+aB~.m-,~/<9~+aB~ (2.7) 

2~ + 313 
P = 2 ~  w (2.8) 

We also note that the canonical transformation inverse to that of equations 
(2.4) and (2.5) is given by 

) J t t  : 

and 

(2.9) 

(2.10) 

We see by inspection that the above canonical transformation will be non- 
singular provided 

~(2~ + 3/3) # 0 (2.11) 

For the standard canonical variables the density weights are 

oJ(g,j) = 0 (2.12a) 

~o(p'J) = 1 (2.12b) 

w(p) = 1 (2.12c) 

oJ(g) = 2 (2.12d) 

Using equations (2.12) we readily find from equations (2.9) and (2.10) the 
density weights for the canonically transformed variables, thus: 

~o(~,ij) = = + fl - 1 (2.13a) 

oJ(rr") = 1 - / 3  (2.13b1 

(2.13c) 

(2.13d) 

~ o ( ~ )  = 1 

5~ + 3/3 - 3 ~(~) = 
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3. THE TRANSFORMED CONSTRAINTS 

In order to determine the canonically transformed constraints it is 
sufficient to substitute equations (2.4)-(2.8) into equations (1.1) and (1.2). 
For  the spatial constraint we obtain 

..yg, s = _2y~/~2~+aB)rr2~-l)!~9.~+aB)[zr~m c~ + /3 -- 1 ] [ '= + ~rr"ym'" + 2~ y'r"rr,m_ (3.1) 

where yr.. is defined to be the Christoffel symbol constructed with respect 
to y~j; that is, 

y~=. -= b/"(y.m,. + y..,,. - era.,.) (3.2) 

We must emphasize, however, in view of  equation (2.13a), that neither does 
~,~ transform as an affine connection, nor is ya covariantly constant should 
we attempt to define covariant differentiation by means of y~,,. Thus, 
although one can confirm by direct computation that ~rf~, as defined by 
equation (3.1), is a spatial vector density, the explicit expression given 
therein is not manifestly so. In order to exhibit ~f~ in a manifestly co- 
variant form, let us introduce a transformed affine connection A~, so defined 
that the tensor density ~'o of  weight (~ +/3  - 1)/= is covarianfly constant. 
Thus, 

0 = Yitle = Y~t.e - y~mA}"e - YmtA~ 

from which we conclude 

c ~ + / 3 -  1 
ytjAmm~ (3.3) 

~ + / 3 -  1 
A}k = y}e 5g + 3/3 -- 3 (3e'Ym' + 3~'~'me -- Y'nY~eYmn) (3.4) 

Employing this new affine connection A}e in the definition of  covariant 
differentiation, the spatial constraint, equation (3.1), may now be written in 
the manifestly covariant form 

~ = -2Ye"2~+ aB)~r2~- 1)'~2~ + 3B ' [  ~ ' ~ + ~ + / 3 -  1 ] 2~ y,m,~ (3.5) 
Im 

The temporal constraint ~ L  has an exceedingly intricate, and not very 
illuminating, form in terms of the new canonical variables. For a particular 
simplifying choice of  ~ and/3 it will be given in a later section. In the manifestly 
covariant notation, the form of o~t~ becomes considerably more tractable. 
Thus, if we define 

Ots _ iris + a + fl - 1. y~slr (3.6) 
2~ 

and 
~0 = zr - ~ -  1)/2c2,+3B) (3.7) 
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we find 

�9 ~ L  = Y - a / (~a  + 3~)~p- 6 

• (pm,p~" (18c~ z + 24c~13 + 9/32- 20c*- 12/3 + 6) ) 
_ 8c~ 2 q~ - ~=(2o~ + 3a)/(a - z) 

/ 

+ 7=~8~+3a-l~/~=+za-zxz=+~a)~o(~oP - ~ol~ m) (3.8) 

where P is the Ricci scalar associated with A}~. 

4. THE YORK-O'MURCHADHA EQUATIONS 

In order to facilitate a comparison with the work of York and 
O'Murchadha it will be convenient in this section to introduce the tensor 
field (of zero weight) g~j associated with the tensor density which is our 
canonical configuration variable ~,~j. Thus we define 

g~j = ~,-2"~+a-1)/~5~+3B-s)yij (4.1) 

We note that with respect to the affine connection A}~, ~j  is covariantly 
constant. Thus A~.k may be regarded as the Christoffel symbol formed from 
~j,  and P is proportional to the Ricci scalar formed from ~j. Denoting 
the determinant of g~j by g we obtain from equation (4.1) 

~, = g~5~+3B-3)/2~ (4.2) 

If we substitute equation (4.2) into equation (3.8) we find the slight modifica- 
tion 

" ~ L  = ~-(5a+3B-3)12(2~+3B)~-6 

(18~ 2 + 24~13 + 9132 - 20g - 12/3 + 6) ) 
X p m n p m  n __ 80; 2 fl 9 - 4 ( 2 a  + 3B) / (a  - 1) 

/ 

+ g<3~ + 8B- 1)/2<~, + 3B)~o(~oe _ 8~olm) (4.3) 

In addition, with the notation of equation (3.6), the remaining constraints, 
equation (3.5), may be written 

~,gs = _ 2gB(5~ + 3B- 8)/2,(24 + 3B)71.2(c~- 1)1(2ot + 3B)pSmlr a (4.4) 

We have had the constants ~ and 13 at our disposal until this point. Referring 
to equation (3.6), we see that if  we select a and 13 such that 

~ + 1 3 - 1  
2g = - ]  (4.5) 

or equivalently 
5,, + 3/3 - 3 = 0 (4.6) 
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then the spatial constraint Jd~=  0 has precisely the form of the York 
equation (1.4), albeit in canonically transformed variables. Furthermore, in 
view of the fact that equation (4.6) is consistent with the inequality (2.11) 
the associated canonical transformation is nonsingular. With ~ and/3 so 
chosen, we obtain from the temporal constraint ~'L = 0, via equation (4.3), 

8~1~ = P~ + g-l/~p'"p,,n~-7 3(~ - 1)2g_1/8~ (4.7) 
8a  2 

which we recognize to be the York-O'Murchadha equation (1.7). Now, 
however, via equations (3.7) and (4.6), ~ is the known local function of the 
canonical variables given by 

= ~r 1/6 (4.8) 

The analysis of equation (4.7) given by York and O'Murehadha 
demonstrates the degree to which ~r is determined uniquely by the temporal 
constraint. In the present situation, we have obtained these relations by the 
implementation of a nonsingular canonical transformation, rather than by 
the introduction of an ad hoe conformal factor. It also would appear that 
no coordinate condition was employed to obtain the York-O'Murchadha 
form for the constraints. However, this question requires closer scrutiny. 

5. THE EFFECTIVE COORDINATE CONDITION 

The essential reason for the imposition of equation (4.6) is that it 
renders p~j trace-free, thereby deeoupling the spatial constraint equations 
~ '  = 0 from the temporal constraint equation ~ L  = 0. Thus, one is able 
to solve for p~j independently of ~r, and then employ equation (4.7) to deter- 
mine ~r. However, if we refer to equation (2.13d) we find that equation (4.6) 
has as a consequence 

oJ(y) = 0 (5.1) 

Thus 9' has become a scalar, rather than a density. It follows that there can 
only exist an affine connection for which y~ is covariantly constant provided 
9' is a constant. The explicit expression for A}k, equation (3.4), is seen to 
become singular unless y~k = 0. However, setting ~, equal to a constant is 
precisely equivalent to York's coordinate condition, equation (1.3). In fact, 
substituting equations (2.7), (2.8), and (4.6) into the right-hand side of 
equation (1.3) we find 

1 - ~ . y - ~ j a < l - ~ >  (5.2) t - - - ~  

Note that our condition of nonsingularity, equation (2.11), is now 

~(1 -- a) ~ 0 (5.3) 
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If  we attempt to employ the auxiliary metric tensor g~j, we find from 
equation (4.2) that equation (4.6) imposes the effective coordinate condition 
~, = 1. However, despite appearances, we must emphasize that, provided 
equation (5.3) is satisfied, the canonical transformation that we have per- 
formed is not singular. It is our effort to write the constraints in a manifestly 
covariant form, thereby decoupling the spatial and temporal constraints, 
that has introduced this singular behavior. 

In order to clarify this latter point, and to discover what our canonical 
transformation has accomplished before the introduction of a coordinate 
condition, let us reexamine the form that the constraints take in terms of the 
canonical variables ~,~j, ~r ~;. For simplicity, consistent with equation (4.6), 
we shall consider the case where 

= ~, ~ = 0 (5.4) 

By direct substitution into equation (3.1), the spatial constraint now yields 

; ,~s  = v-2/3(p~.m + ~g,,p,,, _ ~TryS,~,;,) = 0 (5.5) 

where, via equation (3.6), 

p'J = ,~" - k i n ,  ' j  ( 5 . 6 )  

Similarly, by direct substitution of equations (2.4)-(2.8), into equation (1.2), 
and employing the definition of equation (4.8) we find for the temporal 
constraint 

~ n  = ~ , 1 ~ 2 ~ [ ~  - -  8~,m.(~.~ .  _ y~..~0.,) + ~ - ~ p ~ . p ~ . ~ - 7  _ ~ - ~ ]  = 0 
(5.7) 

where ~ is the expression for the Ricci curvature scalar constructed as if  
~,~j were a metric tensor. We see that the above expressions for ~'~ and 
HL are perfectly regular, as anticipated. In fact, equation (5.7) retains the 
form of the York-O'Murchadha equation. From an analytic point of view, 
we can neglect the density properties of q~ and ~,~, and regard them, respec- 
tively, as a scalar and a symmetric tensor, in which event equation (5.7) 
may be written essentially identical to equation (1.7). 

On the other hand, our canonical transformation does not succeed in 
decoupling the equation for p~J, equation (5.5), from equation (5.7). Its 
accomplishment is to make the spatial constraints algebraic in ~r. The 
decoupling is evidently accomplished only by the coordinate condition 

ffZ ~,,,~ = 0 or equivalently ~, = const. 

6. CONCLUDING REMARKS 

We have attempted to decouple the spatial and temporal constraints 
of general relativity without employing coordinate conditions. In order to 
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accomplish this we implemented a York-like conformal transformation 
canonically; however, we discovered that without a coordinate condition 
the constraints remained coupled. Our canonical transformation did succeed 
in simplifying the constraints to the extent that the temporal constraint took 
the form of the well-analyzed York-O'Murchadha equation, while the 
spatial constraints became algebraic in ,r. The extent to which this latter 
property proves significant remains to be explored. 

The inhomogeneous equation for p'J, equation (5.5), may easily be solved 
by York's method (York, 1973) of separating traceless tensors into their 
longitudinal and transverse parts. More explicitly, from an analytic point 
of view we may introduce notation that is adapted to treating p*J as a tensor 
density of weight 1 and ~,~,~ as a proper affine connection. In that event we 
may obtain from equation (5.5) the inhomogeneous equation fo r /#  

p,mjm = ~mv~,~ (6.1) 

We recognize that, owing to the fact that the notation for covariant dif- 
ferentiations now refers to the connection ~ , ,  which, as we have noted, does 
not transform as an affine connection, equation (6.1) is not manifestly 
covariant, although it is a true vector density relationship. Following York, 
this equation may be solved by writing 

t # = P~r + p~ (6.2) 
where 

tm Prrt~ = 0 (6.3) 
and 

p~ _ ~tJ + ~J. _ ~r,JC~ln (6.4)  

Substitution of the above three relations into equation (6.1) yields for p~ 
the unique (York, 1973) solution 

p~ = �89 + (D-lw~'Jmy~m)lJ - ~V'J(D-l~rtmy~,,,)tr] (6.5) 

where D is the linear differential operator defined by 

D~ ~ = e l m  m + ~ral~ m - z3~mlmlt (6.6) 

Thus p~' is given as an explicit (nonlocal) functional of ,r, while the equation 
for pgr, equation (6.3), is completely decoupled from the temporal constraint, 
equation (5.7), and can be solved in full generality. Substituting the resulting 
expression for p,s into equation (5.7), we obtain an equation for % or 
equivalently for ~r, without employing coordinate conditions. It requires 
further investigation to determine to what extent the uniqueness result of 
York and O'Murchadha is altered by the fact that the term pm"p~,, in the 
temporal constraint is now a functional of ~. 

It is at this point that the property of the inhomogeneous term in the 
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spatial constraint being proportional to ~r may be of  significance. For  it is 
important to the proof  of  uniqueness that the inequality 

pm~pm~ > 0 (6.7) 

be satisfied (except possibly on a set of  measure zero). Since the spatial 
metric is positive definite it is evident that we have pmnprnn ~ 0 and further 
that 

pmnpm n : 0 ~ pf~i : 0 (6.8) 

However, should this equality be valid in a finite region it would then follow 
from the spatial constraint, or equivalently, from equation (6.1), that 

�9 r~'~my~m = 0 (6.9) 

Thus, in the generic case (that is, in the absence of coordinate conditions 
such as y = const), we are assured that either the inequality equation (6.7) 
is satisfied or w ~j = 0 is the (singular) solution of  the constraints. We do 
not wish to imply that in the present circumstance this property is sufficient 
to establish the uniqueness of  the solutions of  equation (5.7), but merely 
that the prospect of establishing such a result is by no means hopeless. 

As a final observation, we would like to note that, by methods similar 
to those employed in this paper, it is possible to construct more general 
canonical transformations that are algebraic but not conformal. In every 
example of this kind that we have examined, the condition that decoupled 
the spatial and temporal constraint equations invariably implied an effective 
coordinate condition quite similar to that of equation (1.3). It is not dear,  
however, whether this feature is coincidental or has some subtler significance. 
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